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analysis in assay optimization* 
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Abstract: A procedure is proposed for utilizing information from previous work on development  of LC assays in order to 
facilitate the analysis of novel compounds  related to those previously analysed. The  procedure employs a multivariate 
method  from the field of chemometr ics ,  partial least squares  analysis (PLS) to combine quantitative information on the 
chemical propert ies of a compound  with a quanti tat ive description of the column and the mobile phase and then to use 
this information to form a regression model  for the retention time. A test of  the procedure was made by using data on 
nucleoside analogues studied in our  laboratory. Data  obtained from chromatographic  studies of  seven compounds  tested 
in a total of  28 combinat ions  of columns and mobile phases (3-5  per compound)  were used to calculate a PLS model. The  
model  was then used to predict retention times of nine other  substances and the results were compared with experimental  
data. The  predictions were (115 + 82%) (95% confidence interval) of  the experimentally observed retention times. The 
results are encouraging and the method  will be subject to further and extended investigations. 
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Introduction 

LC is one of the most common tools in clinical 
pharmacology,  pharmaceutical and biomedical 
laboratories doing analytical chemistry on bio- 
logical samples to quantitate drug concen- 
trations. Several methods have been proposed 
for the development  of new LC assays and two 
methods seem to be the most prevalent. The 
most common is non-systematic experience 
(intuition combined with knowledge) and the 
second is expert  systems. There are several 
examples also of experimental design based 
approaches with response surface modelling in 
the spirit of Box et al. [1]. In a separate 
paper [2] we have developed methods to 
optimize an LC assay for one or more 
compounds by using a multivariate method 
developed within the field of chemometrics [3], 
partial least squares analysis (PLS), which we 
have previously used extensively in pharmacol- 
ogy [4]. Here ,  we develop a method by which 
another,  but related, problem can be 
approached. 

In the development  of new drugs it is by far 
the most common that a number of compounds 
within a chemical class of compounds,  rather 

than structurally unrelated molecules, are 
studied. Several compounds within a series can 
be expected to reach the stage where a 
pharmacokinetic study is carried out necessi- 
tating the availability of an assay for the drug. 
Whenever  a new compound in the class 
reaches the analytical laboratory it is naturally 
desirable that the experience gained from the 
previously investigated compounds (combined 
with the general knowledge of the analytical 
chemist) is utilized in the most efficient manner 
possible. In the present paper we use a similar 
approach as the one in the previous paper [2] 
to utilize knowledge on LC obtained through 
experience in a laboratory to identify the 
region from which an optimization can start. 
The approach will therefore have elements of 
an expert  system since it provides knowledge- 
based suggestions by means of a computer  
program that uses a mathematical model to 
derive the suggestions. New features are that 
quantitative physicochemical characterizations 
of the drugs as well as the components of the 
LC system are used to the extent they are 
available. We illustrate the method by an 
example from our involvement in the develop- 
ment of nucleoside analogues. 

* Presented at the Fifth International  Symposium on Pharmaceutical  and Biomedical Analysis,  Stockholm, Sweden, 
September  1994. 
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M a t h e m a t i c a l  M e t h o d s  We can predict Y from the model as 

Design 
It will be assumed that considerations other 

than the design will govern the choice of 
compounds  reaching the stage where assays 
need to be developed.  While experimental  
design methods will have been used to 
optimize the LC method for each compound 
(that is, there will have been a systematic 
exploration of the influence of factors such as 
mobile phase and LC column) it cannot be 
assumed that factors other than the biological 
activity have been used to select a drug for 
further development .  The physicochemical 
propert ies  of  the compounds in a series will 
therefore vary in a non systematic manner  and 
collinearity may be a problem if multiple 
regression like data analysis methods are 
employed.  The example used to illustrate the 
method is of this kind. 

Multivariate analysis 
The method chosen here for the analysis of 

the data is the partial least squares analysis 
(PLS). It has been described in considerable 
detail elsewhere [3, 4] and computer  programs 
are commercial ly available. The algorithm is 
given below without further comments .  
Standard matrix algebra notation is used (see 
e.g. [5]) and all vectors are column vectors. 
The matrix containing the information about  
compounds ,  columns and mobile phases 
(described in detail below) is denoted X and 
the vector of regention times (or rather log K ' )  
is denoted Y. Weight vectors for X and Y are 
denoted w and q respectively, and the loading 
vectors for X are denoted p. Score vectors for 
X and Y are denoted t and u, respectively. The 
regression coefficients between t and u are 
denoted b. After  normalization of X and Y to 
zero mean and unit variance (or other appro- 
priate scaling) the PLS algorithm proceeds as 
follows 

0. guess u as e.g. first column of Y (which 
here has only one column) 

1. w = X ' u / u ' u  

2. Ilwll-- 1 
3. t = Xw/w'w 
4.  q = Y ' t / t ' t  

5. IIq[I-- 1 
6. u = Yq/q 'q  
7. repeat  1-6 until convergence 
8.  p = X ' t / t ' t  

9 .  b = u ' t / t ' t .  

10. Y p r e a i c t e d  = btq '  
11. E = X -  t p '  

12. repeat  from 0 replacing X with E to get 
next dimension. 

Maximally as many dimensions can be 
extracted as there are linearly independent  
columns in X or as the number  of rows - 1, 
whichever is the smallest of the two. To 
determine the significant number  of dimen- 
sions we use cross-validation as described in 
detail elsewhere [3, 4, 6]. The principle of 
cross-validation is to hold out part  of the data, 
calculate the model for the remaining part  and 
see if the model  produces a smaller prediction 
error  than a simpler model does. The process is 
repeated  for the whole data set and the number  
of dimensions giving a significant reduction of 
the prediction error  is chosen [6] with a 
significance level of 5%. To predict Y-values 
f rom new data these are scaled data in the 
same way as the model data and the t-score is 
calculated by means of the weight vector w and 
the b and q-values are used to predict Y-values 
which finally are rescaled to the original 
variables. To get a second dimension, residuals 
have to be calculated in the same way as in the 
algorithm by subtracting ene w = X n e  w - -  tnewP' 
and the process is repeated.  A most  important  
feature of the present methodology is that the 
number  of  significant PLS-dimensions usually 
is substantially smaller than the number  of 
analytes, column and mobile phase 
characteristics. 

Illustrative data 
From the compounds belonging to the class 

of nucleoside analogues and their metabolites 
which we have studied in different pharmaco-  
kinetic experiments  in our laboratory we have 
selected a subset to calculate a PLS-model.  
Nine of the remaining compounds  were used to 
test the model. The training set consisted of the 
following substances for which the numbers  
given in parentheses corresponds to the 
numbers  in Figs 1 and 2: alovudine-5'-glucur- 
onide (19-21),  A M T  (2 '3 ' -dideoxy-3 ' -amino-  
thymidine) (26-28),  F L G  (2 '3 ' -dideoxy-3 '-  
f luoroguanosine) (1-5) ,  H 2 G  ( ( - )2 -hydroxy-  
methoxyhydroxybutyl-guanine)  (22-25), 
FCdU (5-chloro-2'3 '-dideoxy-3'-f luorouridine) 
(16-18),  zalcitabine (6-10) and zidovudine 
(11-15).  The test, or validation, set consisted 
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of ACV (aciclovir), FLT (alovudine), 
BEA005 (2'3'-dideoxy-3'-methoxycytidine), 
dC (2'-deoxycytidine), dT (2'-deoxythymid- 
ine), FMMdU (5-methoxymethyl-2'3'-di- 
deoxy-3'-fluorouridine), FEdU (5-ethynyl- 
2'3'-dideoxy-3'-fluorouridine), PCV (pen- 
ciclovir) and AZT-G (zidovudine-5'-glucur- 
onide). The compounds were physic•chem- 
ically characterized by employing a substituent 
scale constructed for aromatic compounds by 
means of principal component analysis [7]. 
Three scales are used for each substituent. The 
3'- and the 5-substituent of cytidine and uridine 
were quantitated in this manner. To distinguish 
between the bases cytosine, guanosine and 
uracil (which includes thymine) 0-1 indicator 

variables were used. The rational of this has 
been given by other authors [8]. Glucuronides 
and acyclic sugar were treated also by 0-1 
indicator variables. Thus, the 14 variables 
(numbers 1-14 in Figs 3 and 4) used to describe 
the compounds were: glucuronide, molecular 
weight, partition coefficient octanol/water, 
pKa, guanosine-base, cytidine-base, uridine- 
base, cyclic sugar, 3'-scale 1, 3'-scale 2, 3'-scale 
3, 5-scale 1, 5-scale 2 and 5-scale 3. The 
100 mm C18-columns were described by the 2 
variables (numbers 15 and 16 in Figs 3 and 4): 
particle size (3 and 5 Ixm) and dead-volume 
time (0.68-2.15 min). The mobile phase was 
described by the 5 variables (numbers 17-21 in 
Figs 3 and 4): concentration of octane-sulph- 



372 L. ST,~HLE et al. 

0 2  

0 1  

l I I L I 
-0.6 -0.5 -0.4 -0.3 -0.2 

• 1 8  

0 . 3 -  
•19  

• 0 1 1  

13 17 

0 . 1 -  

o12  

I 4 
-0.1 0 

9 

• 5 -0.1 

• 21 16 
-0.2 

• 20 

-0.3 

• 1 0  
I 

0.1 

0 3  

• 8  

• 6  

o14 

I I 
0.2 0.3 

w l  

Figure 3 
Plot of the w-scores of the first versus the second PLS component.  The numbers in the figure correspond to the order of 
the variables in X as given in the methods section. 
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Figure 4 
Plot of the w-scores of the second versus the third PLS component .  The numbers in the figure correspond to the order of 
the variables  in X as given in the methods section. 

onic acid (0-5 mM), % organic solvent, 
solvent scale 1, solvent scale 2 and pH (2.5-  
6.0). The solvent scales were obtained from [9] 
and in this study we used methanol (4-20%) 
and 2-propanol (1.5%). A 0.05 M phosphate 
buffer was used throughout the experiments. 

The data matrix X consisted of 21 columns, 
the descriptors enumerated in the preceding 
paragraph. Each row is a unique combination 
of a compound,  a column and a mobile phase 
which result in a retention time (or rather log 
K' )  which make up Y. The results are pre- 
sented as pair-wise plots of t-vectors and pair- 
wise plots of w-vectors. A plot of observed 

versus predicted retention times of the test, or 
validation, set is given together with a 95%- 
confidence interval for the predicted retention 
time relative to the observed retention time. 

Computer program 
Programs were written in Pascal (Turbo 

Pascal TM) on IBM PC-compatible computers. 
The PLS algorithm has been validated both 
against commercially available programs and 
by internal checkups of orthogonality con- 
ditions, e.g. between t vectors and between w 
vectors. The final program allows an input of 
compounds,  columns and mobile phases in 
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Substance AZT 

Nucleobase: 
LogP: 
Substituents: 

Cyclic: 
MW: 
Solubility: 
Meltin~ pt: 
Detection: 

_ Guanosine _Adenosine _ Cytidine XUridine 
1.400 pKA: 9.800 

t l  t2 t3 
2' 0.000 0.000 0.000 
3' 2.511 -1.493 0.641 
5- -99.900 -99.900 -99.900 
8- -99.900 -99o900 -99.900 
_Y. (Y/N) 
267.200 
-99.900 (water) -99.900 (ethanol) 
-99.900 
XStandard wavelength XVariable wavelength 

Direct Flourescense Indirect Flourescense 
Electrochemical X Radioactive 

Length: 10.0 (5-25 cm) 
Inner diameter: 2.1 (0.5-5 mm) 
Particle size: 5.0 (1-401~m) 
Dead vol time: 2.116 
Phase: X Reversed _ C8 

Straight 
X C18 

Buffer: 

Buffer Strength: 

Solvent 1: 

Solvent 2: 

Ion-pair reagent: 

X Phosphate _ Actetate/Citrate Other 

0.050 pH: 2.330 

name tl t2 vol% 
METHANOL 1.03 -2.95 10.000 

-99.900 -99.900 -99.900 

218.300 (Mw) 1.000 (concentration) 

Figure 5 
Sample screens from the computer program developed to handle the data obtained from nucleoside analogue 
chromatography. 
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three separate parts which can be uniquely 
combined later on and linked to a retention 
time. The program also provides suggestions to 
detection methods based on previous knowl- 
edge and it therefore has typical expert system 
characteristics. However,  it does differ from 
conventional programs used as expert systems 
in the sense that it uses a mathematical model 
that provides a quantitative output and an 
interaction with the user in the prediction 
phase. A full description can be obtained upon 
request from one of the authors (AM). 
Selected screen outputs from the program are 
provided in Fig. 5. 

R e s u l t s  

The score and weight plots calculated from 
the illustrative data are shown in Figs 1-4. 
From these plots the influence of different 
variables on the retention behaviour can be 
studied. We wish to point out that the influ- 
ence of the variables must be interpreted 
together and that no assumption of indepen- 
dence is implicit in the model. However,  from 
the score plot of the second versus the third 
dimension it can be seen that the "nor thwest -  
southeast" direction in the plot is due to 
differences among substances while the ortho- 
gonal direction is due to column and mobile 
phase. 

In Fig. 6, the observed retention times of the 
validation set are plotted against the predicted 
retention times. The mean prediction of a 
retention time was 115% of the observed and 

the 95% confidence interval for the individual 
predictions was 33-197%. Thus, using the 
model presented here, there is a 95% chance 
that the predicted value lies between 33 and 
197% of the retention time one would get if the 
same test had been carried out in the labora- 
tory. The range of deviations observed in the 
present study was 75-165% and the distri- 
bution had a tendency to a skewness. The two 
compounds for which the prediction errors 
were largest are the 3'-hydroxylated nucleo- 
sides, dT and dC, and no such compound was 
used in the training set. 

D i s c u s s i o n  

The approach taken here can be used to 
facilitate the start of an assay development 
such that the region in which reasonable 
retention times are expected to be found can 
be identified. The example given in the results 
section shows that the method actually works 
in practice. Several factors will influence how 
well the method is going to work on a given set 
of compounds. Firstly, interpolation can 
always be expected to produce smaller pre- 
diction errors than extrapolation. Since the 
choice of the LC column and the mobile phase 
composition are under experimental control 
these factors do not constitute a difficult 
problem. In contrast, the compounds to be 
analysed have been chosen according to their 
pharmacological and possibly other properties 
but they have not been selected by considering 
their chromatographic properties. Therefore, 
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Figure 6 
Plot of observed versus predicted retention times for nine compounds (abbreviations are given in the methods section) for 
which the mobile phase was chosen at random from those investigated. The model is based on seven other compounds 
(see the Methods section) with a total of 28 different chromatograms. Three to five chromatograms were selected for each 
compound taking experimental design considerations into account. The oblique line is x = y. 
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the compounds will appear to the analytical 
chemist as if they were, in principle, randomly 
selected and, therefore,  interpolation will be 
an exception rather than the rule. Secondly, 
the fewer the compounds that have been 
investigated, the poorer  the predictions are. At 
a very early phase it is probably better  to guess 
than to use the design suggested here because 
the information available to the PLS prediction 
can be expected to be much smaller than the 
information available to the chemist. A poss- 
ible improvement  of our program is, therefore,  
to try to use information obtained from other 
series of compounds in order  to use general 
information on retention behaviour in an LC 
system, e.g. the behaviour when pH varies 
around pKa and the effect of lipophilicity of the 
compound.  Thirdly, physicochemical charac- 
terizations of chromatographic columns, that 
can be used in the same way as the organic 
solvent descriptors, are not available and the 
reproducibility of some column materials is at 
present too poor to allow reasonably accurate 
predictions. An example that has been encoun- 
tered in practice is that the position of analytes 
on cyanocolumns may switch when one column 
is replaced by another.  Taking into consider- 
ation these difficulties we find it rather satis- 
factory that the predicted retention times 
found here result in a confidence region that is 
33-197% of the true retention time. This 
provides us with the starting point we need to 
quickly develop an assay. 

In the present paper some special features of 
PLS have been exploited in the coding of 
physicochemical properties that are of interest 
from a general point of view. In particular, the 
fact that the handling of missing values is part 
and parcel of the PLS algorithm has been used 
to handle different chemical skeletons, here 
represented by the different nucleoside bases. 
Mathematically, this is done by "assuming" 
that the missing values are exactly in accord- 
ance with the model i.e. the model is not 
influenced by the missing values. For sub- 
stituents on molecules that are different, like 
the bases guanine and uracil, it is not possible 
to define the 5-substituent on both molecules 
such that they have the same physicochemical 
meaning. It is, however,  possible to assign 
missing values to the structure lacking the 
substituent to be quantitated. In the present 
case, uridine and cytidine analogues have 5- 
substituents chemically corresponding to one 
another  while guanosine analogues have no 

such substituent. We have therefore assigned 
missing values to the guanosine analogues in 
the three columns used to describe the 5- 
substituents. The approach worked in the 
present study but it is not yet known how 
extensively this method can be used and how 
disparate molecules that can be handled in the 
same analysis. Further research is needed to 
answer these questions. 

Another  possibility to improve upon the 
mathematical method used here is to include 
non-linear and interaction terms in the PLS- 
model.  Such changes can easily be made and 
will also be included in future versions of the 
program. Another  point worth mentioning is 
the common situation where some new 
approach has to be developed in order  to 
improve upon the chromatography or to 
describe the compounds studied. Such changes 
can be incorporated into our method in a 
natural way provided they are carefully coded 
such that previously obtained data can be used 
in spite of the addition. 

Finally, we must discuss the most desirable 
situation, i.e. how to choose a column and 
mobile phase in order  to get a prespecified 
retention time. This can, of course, be 
achieved ultimately, but it requires that so 
much data has been collected in a systematic 
fashion that the whole property space is well 
spanned. This is, however, not realistic in a 
laboratory which spends most of its time and 
interest in analysing biological samples rather 
than developing new methods. In the more 
realistic situation the data will not span the 
property space and, therefore,  it is not possible 
to get o n e  unique combination of mobile phase 
and column to get a selected retention time for 
a specific compound. Instead, many com- 
binations can give the same retention time and, 
at most, an equation for a subspace in the 
property space can be given which produces 
the desired retention time. We have not tried 
this approach yet, preferring the simulation- 
like situation presented in the present paper. A 
main reason for this is the simplicity of the 
approach, which we assume is attractive to 
many chemists and pharmacokineticists. 

A c k n o w l e d g e m e n t  - -  The present study was supported by 
grants from the Swedish Medical Research Council (grant 
09069) and Medivir AB. The technical assistance of 
laboratory technician Eva Kristoffersson is gratefully 
acknowledged. 



376 L. STJ~HLE et al. 

References 

[1] G.E.P. Box, G.W. Hunter and J.S. Hunter, Statistics 
for Experimenters. Wiley & Sons, New York (1978). 

[2] L. St~hle, /~. Hallstr6m, N. Borg and A. Carlsson, 
Manuscript (1994). 

[3] S. Wold, A. Ruhe, H. Wold and W.J. Dunn, III, 
SIAM J. Sci. Statist. Comput. 5, 735-743 (1984). 

[4] L. St:~hle and S. Wold, Progress in Medicinal 
Chemistry Vol. 25, pp. 292-334, Elsevier, Amsterdam 
(1988). 

[5] H. Anton, Elementary Linear Algebra, Wiley & Sons, 
New York (1987). 

[6] L. St~hle and S. Wold, J. Chemometrics 1, 185-196 
(1987). 

[7] B. Skagerberg, D. Bonelli, S. Clementi, G. Cruciani 
and C. Ebert, Quant. Struct. Act. Relat. 8, 32-38 
(1989). 

[8] J. Jonsson, Quantitative Sequence-Activity Modelling. 
Thesis, Univ. Ume~ (1992). 

[9] R. Carlsson, T. Lundstedt and C. Albano, Acta Chem. 
Scand. B 39, 79-91 (1985). 

[Received for review 22 September 1994; 
revised manuscript received 9 December 1994] 


